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Abstract

Impact from natural hazards is a shared global problem that causes tremendous loss of
life and property, economic cost, and damage to the environment. Increasingly, many
natural processes show evidence of nonstationary behavior including wind speeds,
landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional5

probabilistic analysis of natural hazards based on peaks over threshold (POT) generally
assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of
exceedance of some critical event is constant through time. Given increasing evidence
of trends in natural hazards, new methods are needed to characterize their probabilistic
behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to10

this problem because its primary goal is to describe changes in the exceedance prob-
ability of an event over time. HFA is widely used in medicine, manufacturing, actuarial
statistics, reliability engineering, economics, and elsewhere. HFA provides a rich the-
ory to relate the natural hazard event series (X ) with its failure time series (T ), enabling
computation of corresponding average return periods, risk and reliabilities associated15

with nonstationary event series. This work investigates the suitability of HFA to charac-
terize nonstationary natural hazards whose POT magnitudes are assumed to follow the
widely applied Generalized Pareto (GP) model. We derive the hazard function for this
case and demonstrate how metrics such as reliability and average return period are
impacted by nonstationarity and discuss the implications for planning and design. Our20

theoretical analysis linking hazard event series X , with corresponding failure time se-
ries T , should have application to a wide class of natural hazards with rich opportunities
for future extensions.
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1 Introduction

Studies from the natural hazards literature indicate that certain hazards show evidence
of nonstationary behavior through trends in magnitudes over time. Such trends in the
magnitudes of natural hazards have been attributed to changes in climate patterns,
e.g. for wind speeds (de Winter et al., 2013), wildfires (Liu et al., 2010), typhoons (Kim5

et al., 2015), and extreme precipitation (Roth et al., 2014), and also linked directly to hu-
man activities, e.g. increase in earthquakes from wastewater injection associated with
hydraulic fracturing (Ellsworth, 2013). Other natural hazards such as floods resulting
from streamflow (Di Baldassarre et al., 2010; Vogel et al., 2011) and from sea level rise
(Obeysekera and Park, 2012) may be a result of a myriad of anthropogenic influences10

including climate change, land use change and even natural processes such as land
subsidence. In addition to evidence of magnitude changes of many natural hazards,
recent reports document a corresponding surge in human exposure to natural hazards
(Blaikie et al., 2014), along with a 14-fold increase in economic damages due to nat-
ural disasters since 1950 (Guha-Sapir et al., 2004). Given evidence of trends and the15

consequent expected growth in devastating impacts from natural hazards across the
world, new methods are needed to characterize their probabilistic behavior and com-
municate event likelihood and the risk of failure associated with infrastructure designed
to protect society against such events. The existing rich and evolving field of hazard
function analysis (HFA) is ideally suited to problems in which the probability of an event20

is changing over time, yet to our knowledge has not been applied to natural hazards.
Our primary goal is to apply HFA to characterize the likelihood of nonstationary natural
hazards and to better understand the expected time until the next natural hazard event
occurrence for design and planning purposes.

Probabilistic analysis of natural hazards normally takes one of two approaches in25

fitting a probability distribution to hazard event data series. As we summarize in Ta-
ble 1, a very common approach to probabilistic analyses of natural hazards employs the
peaks over threshold (POT) dataset, also commonly referred to as the partial duration
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series (PDS), to characterize exceedances above some defined magnitude (threshold)
that occur over an interval of time. The second approach is to fit a probability distri-
bution to the annual maximum series (AMS), common practice in hydrology (Gumbel,
2012; Stedinger et al., 1993) and also appropriate for earthquakes (Thompson et al.,
2007) and many other processes (Beirlant et al., 2006; Coles et al., 2001). Hydrolo-5

gists have extensively studied the theoretical relations between POT and AMS methods
(Stedinger et al., 1993; Todorovic, 1978) and compared the two for characterizing the
probabilities of flood events (Madsen et al., 1997). In general the POT approach ap-
pears to provide a larger dataset to draw from, however as the threshold of exceedance
used to define the POT series is lowered, the series of maxima begin to exhibit tem-10

poral dependence which complicates the probabilistic analysis considerably. Further
complexities arise in POT analyses due to subjectivity of the threshold and difficulty in
confirmation of independence between events (Stedinger et al., 1993).

Still the POT method is the most widely used approach for many natural phenom-
ena either because there is an intuitive choice for the threshold of exceedance, as in15

the case of earthquakes where the magnitude of completeness is often selected, or be-
cause the analyst wishes to maximize the use of data, and does not always understand
the tradeoff between the length of the POT series and the inherent increase in its tem-
poral dependence structure and the associated consequences. Due to the wide-spread
application of the POT method, a substantial number of textbooks and articles have20

studied methods for minimizing the difficulty of implementation, with emphasis on the
subjectivity of threshold selection and evaluation of independence of events (Davison
and Smith, 1990, 2003). This study assumes a POT approach is taken as is so often the
case for the probabilistic analysis of magnitudes of natural hazards including extreme
winds (Palutikof et al., 1999), earthquakes (Pisarenko and Sornette, 2003), wildfires25

(Schoenberg et al., 2003), and wave heights (Lopatoukhin et al., 2000), among others.
Future work will extend our analyses to AMS series as has been attempted recently by
Read and Vogel (2015ab) for floods.
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1.1 Application of general POT model in natural hazards

Here we focus on the POT approach to characterize exceedance events and their
frequencies for natural hazards. The GP distribution, a generalization of the exponen-
tial distribution, was first introduced as a limiting distribution for modelling high level
exceedances by Pickands (1975), and later developed by Hosking and Wallis (1987),5

who discuss its theory and an application for extreme floods. Davison and Smith (1990)
provide techniques for dealing with serially dependent and seasonal data for modeling
exceedances above a threshold with the GP distribution. Hosking and Wallis (1987)
discuss the fundamental properties of the GP distribution. See Pickands (1975) and
Davison and Smith (1990) for further theoretical background on the application of the10

GP distribution for modeling POT series. In general, the GP distribution arises for vari-
ables whose distributions are heavy-tailed, in cases where the lighter-tailed exponential
distribution does not provide sufficient robustness (Hosking and Wallis, 1987).

The GP distribution has been widely applied to natural hazards (see Table 1) and
in many other fields including financial risk, insurance, and other environmental prob-15

lems (Smith, 2003) to characterize the magnitude of exceedances above a threshold.
Hosking and Wallis (1987), Stedinger et al. (1993) and others show that if the time
between the peaks corresponding to a POT follow a Poisson distribution and the POT
magnitudes follow an exponential distribution, then the AMS follow a Gumbel distri-
bution. Similarly, Hosking and Wallis (1987) and others show that if time between the20

peaks of the POT series are Poisson and the POT magnitudes follow a 2-parameter
GP (GP2) distribution then the AMS follows a Generalized Extreme Value (GEV) distri-
bution. Table 1 lists many natural hazards problems that apply the Poisson-GP model
for their probabilistic analysis. Here we consider a POT that follows the GP model (the
exponential distribution is a special case of the GP model when the limit of the shape25

parameter approaches zero; see Davison and Smith (1990) for details). For example
the Gutenberg–Richter model developed for earthquake magnitudes is a 2-parameter
exponential model (Gutenberg and Richter, 1954).
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For the natural hazards listed in Table 1, the common approach is to assume that
the probability of exceedance (p) for a given magnitude event is constant from year to
year, i.e. stationary through time. Under the assumption of stationarity in the time series
and resulting exceedance probabilities associated with a particular design event, the
theoretical relationships between POT and AMS enable straightforward computation5

of summary and design metrics such as the quantile or percentile of the distribution
associated with a particular average return period and/or reliability (Stedinger et al.,
1993). When evidence of nonstationarity, or a trend in either or both the frequency or
the magnitude of the exceedance events occurring through time is present (Table 1),
then p can no longer be assumed as a constant and the traditional Poisson-GP (or10

other) model must be modified to account for dependence on time and/or some other
explanatory co-variate. Not adjusting the probabilistic analysis for a positive trend when
it is present can lead to gross over-estimation of the expected return period and reliabil-
ity of a system, as shown for floods by several recent studies (Salas and Obeysekera,
2014; Read and Vogel, 2015a). Importantly, Vogel et al., (2013) document that with-15

out a rigorous probabilistic analysis of trends in natural hazards, we may overlook and
fail to prepare for a wide range of societal outcomes which they document may have
occurred repeatedly in the past

We conclude from a brief review of the literature that the GP POT model is widely
used to model natural hazards, and that it can provide a foundation for a nonstationary20

analysis. What distinguishes this work from the expanding literature on nonstationary
natural hazards, is that we attempt to draw a formal linkage between the magnitude of
the natural hazard event and the waiting time or failure time until we experience another
hazard in excess of some design event.

1.2 Introduction to hazard function theory and implication for natural hazards25

Despite the similarity in name, the application of the theory of hazard function analysis
(HFA), also commonly referred to as survival analysis, is practically absent from gen-
eral literature in the field of natural hazards. HFA is a well-established set of tools useful
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for conducting a “time-to-event” analysis, or for understanding the distribution of sur-
vival (failure) times for a given process (e.g. survival rate of a chronic disease, time until
electrical burnout of a device, age-specific mortality rate). This is precisely the concern
of those modeling natural hazards that are changing over time. Generally, HFA is com-
prised of three primary functions: Eq. (1) the hazard function, h(τ), which is defined as5

the failure rate, or as the likelihood of experiencing a failure at a particular point in time,
τ; Eq. (2) the survival function, ST (t), defined as the exceedance probability for the ran-
dom variable time to failure, T , or in reliability engineering as the cumulative function
(cdf) with realization t, of T , FT (t), where ST (t) = 1−FT (t); and Eq. (3) the cumulative
hazard function, H(τ), interpreted as the total number of failure events over a period10

of time. Note that in natural hazards work, we normally begin with the POT random
variable X , which denotes the magnitude of the natural hazard of interest above some
threshold. Thus a connection is needed between the variable of interest X , and the
time to failure, T , associated with some design event chosen from the probability distri-
bution of X . This is the focus of our work and distinguishes it from most previous work15

in HFA as well as most previous studies in natural hazards, because normally HFA
only focuses on the random variable T , without any formal connection to the variable
of interest X .

Most applications of HFA are interested in computing design metrics based on knowl-
edge of h(τ), ST (t) and H(τ), e.g. the mean time to failure (MTTF), or the reliability of20

surviving a certain amount of time without at least one failure event. In nearly all of the
literature on HFA, the process for defining these three functions begins in one of two
ways: either by first identifying an appropriate hazard function h(τ), a possible path if
sufficient knowledge (or empirical evidence) of the failure process is known, (e.g. does
the probability of failure increase, decrease, or is it constant over time); or, by esti-25

mating the survival function ST (t) by fitting a set of survival time data to a distribution
(Klein and Moeschberger, 1997). Neither of these two approaches are suited to natural
hazards, because until this paper, there has not been any guidance on how to choose
a suitable hazard function h(τ) for a natural hazard event, and in natural hazards work,
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we do not have adequate empirical data on the time to failure to enable fitting a survival
function to data.

The theory of hazard function analysis is derived elsewhere and summarized
in numerous textbooks (Finkelstein, 2008; Kleinbaum and Klein, 1996; Klein and
Moeschberger, 1997), hence we only summarize the fundamental and useful results5

here including the relationships among the hazard rate function h(τ), the probability
distribution function of the time to failure fT (t), the cumulative distribution function of
the time of failure FT (t), and its corresponding survival function ST (t), as well as the
cumulative hazard function H(τ):

h(τ = t) =
fT (t)

1− FT (t)
(1)10

ST (t) = 1− FT (t) = exp

− t∫
0

h(s)ds

 (2)

H(τ) = − ln(ST (t)) =

t∫
0

h(s)ds (3)

Note that since the variable of interest is the time to failure, we elect to use τ solely
for deterministic time and t as the realization of the time to failure corresponding to
random variable T . HFA has been applied in the fields of bio-statistics and medicine15

(Cox, 1972; Pike, 1966) as well as many other disciplines including economics (Kiefer,
1988) and engineering (Finkelstein, 2008; Hillier and Lieberman, 1990). Similar to the
field of natural hazards, these fields need summary metrics associated with the time
to failure, such as the concepts of reliability and the average return period (known in
HFA as ST (t) and MTTF, respectively). Very little attention has been given to the use of20

HFA to natural hazards (Katz and Brown, 1992; Lee et al., 1986), with the exception of
the recent paper by Read and Vogel (2015b), who apply HFA to nonstationary floods.
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Concepts from hazard function theory were applied to develop dynamic reliability mod-
els for characterizing evolving risk of hydrologic and hydraulic failures in conveyance
systems in the 1980s (Landsey, 1989; Tung, 1985; Tung and Mays, 1981).

The primary goal of this work is to use the theory of HFA to link the probabilistic
properties of T with properties of the probability distribution for a nonstationary natural5

hazard event X . We begin by explicitly relating the properties of h(t) to the event mag-
nitudes for a general natural hazard, X , assuming the natural hazard POT follows a GP
distribution. We then derive ST (t), HT (t) and MTTF = E[T ] for the case of 2-parameter
Generalized Pareto (GP2) model. Since an exponential model is a special case of the
GP model, our results also apply to POT series which follow an exponential model.10

Recall that the exponential distribution is of interest when the AMS is Gumbel, which
is applicable for many natural hazards. See Read and Vogel (2015b) for an application
of HFA to POT hazards which follow an exponential distribution, in which case very el-
egant analytical expressions for ST (t) and E [T ] result. Since both the exponential and
GP2 models are widely used for representing natural event magnitudes in a POT, the15

analysis presented here is relevant for a wide range of nonstationary natural hazards.
We hope to demonstrate that HFA can be a useful methodology for characterizing non-
stationary natural hazards, for communicating natural hazard event likelihood under
nonstationarity, and for computing corresponding design metrics that reflect the chang-
ing behavior of the both the magnitude and frequency of a natural hazard through time.20

2 Hazard function analysis for nonstationary natural hazard magnitudes

To relate the properties of h(t) with the magnitudes of a particular natural hazard (X ),
we first consider the stationary situation in which the exceedance probability po for
a particular natural hazard event to exceed some threshold magnitude value is con-
stant through time. In the stationary case, the hazard failure rate, h(t), is constant25

so that h(t) = po. For the stationary case, the time to failure, T , always follows an 1-
parameter exponential distribution (or the geometric distribution for a discrete random
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variable); and, computation of the average return period (or MTTF) is easily obtained
from probability theory as the expected value of the exponential series E [T ] = 1/p.

If the magnitudes of a natural hazard exhibit an increasing trend through time, this
indicates that the exceedance probability associated with a particular design event is
changing with time, which we denote as pτ. In such a situation, the expectation E [T ]5

or MTTF, is no longer a sufficient statistic for the distribution of T , and a more complex
analysis is needed.

For a nonstationary natural hazard, h(t) is no longer constant and can be computed
directly from a probabilistic analysis of the natural hazard of interest. For example,
suppose our interest is in the probability distribution of the time to failure for a natural10

hazard which has been designed to protect against an event with exceedance probabil-
ity po at time t = 0. Such a design event can be expressed using the quantile function
xp for the natural hazard of interest. We term this design event xo(po). Suppose we also
have defined a nonstationary cumulative probability distribution for the natural hazard
X , which we term Fx(x,τ). Then it is possible to compute the changing exceedance15

probability associated with this design event, pτ, using the fact that pτ = 1− Fx(xo,τ).
This forms the fundamental linkage between the probabilistic properties of X and T ,
because the changing exceedance probabilities associated with the design event are
identical to the hazard rate function so that h(t) = pτ. Our use of probabilistic theory
to link the properties of X and T , rather than empirical evidence (fitting) to explicitly20

relate h(t) to the event magnitudes (X ) of a natural hazard is the primary difference
in our analysis compared with other HFA applications in the literature. We believe this
is a fundamental difference which should enable future researchers to formulate even
more general conclusions concerning the probabilistic behavior of nonstationary natu-
ral hazards.25
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3 Two-parameter generalized pareto (GP2) model for magnitudes of natural
hazards

As discussed earlier, the GP distribution is widely used in modeling the magnitudes
above a pre-defined threshold for a variety of natural hazards. In this section we present
the GP2 stationary and nonstationary models, reviewing literature to support the selec-5

tion of our nonstationary natural hazard model formulation. We then use HFA theory to
derive h(t), ST (t) and H(τ) for the GP2 nonstationary model and discuss the findings
and interpretations for each function. Our goal is to show that HFA is ideally suited for
modeling the probabilistic behavior of a wide range of natural hazards whose behavior
is changing through time.10

3.1 Stationary generalized pareto two-parameter model

We assume that the POT natural hazard series follows the GP2 distribution. The def-
initions of the stationary probability density function (pdf) and cumulative distribution
function (cdf) for a GP2 distribution for random variable X , introduced by Hosking and
Wallis (1987) are:15

fx(x) =
1
α

[
1− κ

(x
α

)] 1
κ−1

for κ 6= 0 (4)

Fx(x) = 1−
[
1− κ

(x
α

)] 1
κ

for κ 6= 0 (5)

where α is the scale parameter and κ is the shape parameter. Note that when κ = 0
Cx = 1, Eqs. (4) and (5) reduce to the exponential distribution with a mean of α; this
form corresponds to a Gumbel distribution for the AMS. The reliability function is simply20

Rel(x)= 1−Fx(x), or the probability of nonexceedance associated with X . The first and
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second moments of X are:

µx =
α

1+ κ
(6)

σ2
x =

α2

(1+ κ)2(1+2κ)
(7)

We use the coefficient of variation Cx = σx/µx to represent the variability of the system.
Combining Eqs. (6) and (7) for the GP2 model yields5

Cx =
1

√
2κ +1

(8)

The quantile function for the GP2 distribution for a design event, xp, associated with
exceedance probability, p, is written as

xp =
α
κ
[
1−pκ

]
(9)

These equations serve as the foundation for developing a nonstationary GP2 model,10

discussed in the next section.

3.2 Nonstationary GP2 model

Although we could not locate any previous research combining HFA and nonstationary
natural hazards, there are numerous papers that employ a nonstationary GP model for
the POT magnitudes of specific natural hazards (shown in Table 1). We briefly review15

those models to provide context for the trend model adopted here. Literature on non-
stationary GP models for specific natural hazards has employed a variety of parame-
terizations. For example, Roth et al. (2012, 2014) considered models of changes in the
POT threshold over time and Strupczewski et al. (2001) modeled the arrival time dis-
tribution of the POT with time-varying Poisson parameters. Strupczewski et al. (2001)20

6894

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/3/6883/2015/nhessd-3-6883-2015-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/3/6883/2015/nhessd-3-6883-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
3, 6883–6915, 2015

Hazard function
theory

L. K. Read and
R. M. Vogel

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

also modeled the changes in the magnitudes of the POT events over time by modeling
changes in the GP model parameters over time as we do here.

Nearly all previous studies that employed nonstationary POT models in the context of
natural hazards adopt some form of the Poisson-GP model, and many whose concerns
regard increasing magnitudes have been specific to extreme rainfall. With respect to5

extreme daily rainfall, most have built nonstationary GP2 models assuming a trend in
the scale parameter (α), either modeled linearly (Beguerí a et al., 2011; Sugahara et al.,
2009), or log-linearly (Tramblay et al., 2013). Roth et al. (2014) notes that modeling
a trend in the threshold level itself indicates a comparable trend in the scale parameter.
Tramblay et al. (2013) used time-varying co-variates in the Poisson arrivals (occurrence10

of seasonal oscillation patterns) and in the magnitudes (monthly air temperature) to
model heavy rainfall in Southern France and found improvement from the stationary
model. As pointed out by Khaliq et al. (2006) and Tramblay et al. (2013) and others,
it is less common to vary the shape parameter (κ) through time due to difficulty with
precision and a lack of evidence on model improvement with a time-varying shape15

parameter.
Studies from other natural hazards are consistent with those in extreme rainfall for

nonstationary Poisson-GP model formulations, though with more examples of time-
variation in the shape parameter. For example, Strupczewski et al. (2001) used linear
and parabolic trends in both α and κ to model flood magnitudes; others have explored20

linear models in κ for extreme winds (Young et al., 2011), and in sediment yield (Katz
et al., 2005). For wave height, several assumed a trend in the location parameter either
as linear (Ruggiero et al., 2010) or log-linear (Méndez et al., 2006) formulations. Re-
nard et al. (2006) used a Bayesian approach to explore step-change and linear trend
models in α for general purpose with an application to floods. The Bayesian framework25

was also used by Fawcett and Walshaw (2015) to present a new hybridized method for
estimating more precise return levels for nonstationary storm surge and wind speeds.
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3.3 Derivation of nonstationary GP2 hazard model

Our approach is to derive the primary HFA functions fT (t), FT (t), ST (t), h(t) and H(τ)
from the probability distributions of the random variable X , fx(x) and Fx(x) of the GP2
distribution. To create a nonstationary GP model, we employ an exponential trend
model in the scale parameter αx(τ), so that:5

αx(τ) = αo exp(βτ) (10)

The model in Eq. (10) is equivalent to a model of the conditional mean of the natural
hazard X and has been found to provide an excellent representation of changes in the
mean annual flood for flood series at thousands of rivers in the United States (Vogel
et al., 2011) and in the UK (Prosdocimi et al., 2014). This model is described by Khaliq10

et al. (2006) and was also used in Tramblay et al., (2013) for extreme rainfall.
We assume that the shape parameter κ is constant through time as consistent with

previous studies discussed earlier. This assumption implies that Cx is fixed (Eq. 10), or
that the variability of the system is assumed constant over the time period, defined at
τ = 0, and thus the standard deviation changes in step with the mean (parameterized15

by α). Again, there is reasonable evidence that this is the case for floods (see Vogel
et al., 2011; and Prosdocimi et al., 2014).

Following Vogel et al. (2011), Prosdocimi et al. (2014), and Read and Vogel (2015),
we replace the trend coefficient β in Eq. (10) with the more physically meaningful mag-
nification factorM to represent the ratio of the magnitude of the natural hazard quantile20

at time period (τ +∆τ) to the natural hazard quantile at time T . For the model devel-
oped here, the magnification factor, M, can be derived by combining the GP2 quantile
function in Eq. (9) and the trend model in Eq. (10), inserting into the expression below:

M =
xp(τ +∆τ)

xp(τ)
=

1
λ exp[β (τ +∆τ) ln(pt)]

1
λ exp[βt ln (pt)]

= exp[β∆τ] (11)
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Thus M reflects the change in the magnitude of the natural hazards over time. So for
example, a magnification factor of two corresponding to particular time interval ∆τ,
indicates that the natural hazard has increased twofold over that time period, for all
values of p.

We consider a magnification factor M corresponding to ten time periods, (∆τ = 10),5

since that is what others have done and because it provides a physically meaningful
interpretation of the degree of change in the design events over time. For example,
if the time periods were equal to a year as in an AMS series, this would correspond
to a decadal magnification factor. In this section we derive h(t), ST (t), H(τ), and fT (t)
for the nonstationary GP2 model. First recall that the hazard function is equal to the10

exceedance probability through time for a natural hazard event series, h(t) = pτ(τ).
Using the relationships above we can now derive an expression for h(t) dependent only
on those fundamental parametersM, po, and Cx. describing the behavior of the natural
hazard X and our design exceedance probability to protect against future hazards.

Consider that the design event in Eq. (9) is fixed and set at time τ = 0, and denoted15

as xo, and associated with po and αo; we can use the fact that pτ = 1−Fx(x) in Eq. (5),
combined with xp = xo from Eq. (9) and the definition of M in Eq. (10) which yields,

H(τ) = pτ =

1− (1−p
1−C2

x
2C2
x )

exp(M · τ)


2C2
x

1−C2
x

(12)

where κ is replaced with Cx after rearranging Eq. (8). Combining the theoretical re-
lationships in Eqs. (1–3) with Eq. (12), leads to expressions for ST (t), H(τ), and fT (t)20
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which are solved easily by numeric integration.

ST (t) = ReliabilityT (t) = exp


−

t∫
0

1− (1−p
1−C2

x
2C2
x )

exp(M · s)


2C2
x

1−C2
x

ds


(13)

H(τ) =

τ∫
0

1− (1−p
1−C2

x
2C2
x )

exp(M · s)


2C2
x

1−C2
x

ds (14)

Finally, the pdf of the time to failure distribution for the GP2 nonstationary model is

fT (t) = b ·exp

− t∫
0

bds

 (15)5

where b =

1− (1−p
1−C2

x
2C2
x )

exp(M · s)


2C2
x

1−C2
x

For the case of the 1-parameter exponential, these functions simplify to h(t) = pM
−t/∆τ

o ,

ST (t) = exp

[
−
t∫
0
pM

−s/∆τ

o ds

]
, H(τ) =

τ∫
0
pM

−s/∆τ

o ds, and FT (t) = d
dt

[
exp(

t∫
0
pM

−s/∆τ

o ds)

]
(see

Read and Vogel, 2015b for a complete derivation).
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3.4 Investigation of impacts of nonstationarity on probabilistic analysis of
natural hazards using HFA

In this section we explore how HFA can characterize the behavior of nonstationary
natural hazards whose PDS magnitudes follow a GP2 model. Our results are exact
(within the limitations of numerical integration) because they result from the derived5

analytical equations in Eqs. (12–15) for the HFA functions fT (t), FT (t), and ST (t), h(t)
and H(τ) corresponding to a natural hazard X which follows a GP2 model. With no loss
in generality, we assume the mean of the GP2 natural hazard of unity. We investigate
the impact of small and large trends (corresponding to magnification factors,M, ranging
from 1 to 1.25 with ∆τ = 10) for a range of physical systems characterized by a range10

in variability corresponding to a range in the coefficient of variation of X , Cx, from 0.5
to 1.5 (corresponding to a range in the GP2 shape κ between −0.28 to 1.5) for three
event sizes (po = 0.01, 0.002, 0.001).

Figure 1 presents the hazard function h(t), examining how it is influenced by the
variability of the natural hazard and the magnitude of the trend for a particular design15

event po = 0.002 (500 year event): (a) increasing variability, Cx = 0.75, 1.25, 1.5 for
a set M = 1.1, and (b) increasing trend values, M = 1.1, 1.25, 1.5 for a set Cx = 0.75.
Note that in the stationary case, pt = po = 0.002 results in a constant horizontal line,
and as the magnitude of the trends increases (as M increases), the hazard rate h(t)
tends toward unity earlier in time. Even from this initial relatively simplistic investiga-20

tion we find that the hazard functions exhibit complex shapes, with some exhibiting
inflection points, and other without an inflection. This is extremely important, because
most applications of HFA assumes a particular hazard function without deriving their
generalized shapes in advance as we do here in Fig. 1. Another important point is that
the variability of the hazard magnitudes (characterized by the shape of the pdf of X )25

impacts the rate at which h(t) increases, so that less variable hazards tend to have
higher hazard rates than more variable hazards. This point is perhaps initially counter-
intuitive, our interpretation is that if a hazard is more consistent (with less variability),
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a larger trend ensures exceedance more so than a less consistent system that has
a wider range of small and large events. This finding is relevant for planning purposes
as it indicates which systems may be greater impacted by nonstationarity.

Typically in HFA work, the survival function ST (t) is presented as a primary figure
in understanding risk of failure and likelihood of experiencing an exceedance event5

within a given period of time. Since ST (t) also represents the relationship between sys-
tem reliability and time and because many fields employ the concept of reliability to
protect against natural hazards, the ST (t) function is also very relevant for planning
purposes in this context (see Read and Vogel, 2015a, b for further discussions relat-
ing to flood management and design). Figure 2 illustrates ST (t) for a po = 0.002 event10

with a fixed Cx = 0.75 representing a slightly lower variable system, and a range of
increasing trends (M = 1.02, 1.1, 1.25) compared with stationary conditions (M = 1).
Clearly even a small trend significantly reduces the system reliability compared with
our expectations under stationary conditions. For example, the reliability of a structure
designed to protect against a 500 year event under stationary conditions after 50 time15

periods is quite high (Rel= 0.90), however, as M increases, the reliability decreases
significantly, approaching zero for M = 1.1 and 1.25 at τ = 50. This suggests that if
one was designing infrastructure to withstand a particularly large magnitude event over
a planning period, under nonstationary conditions, the design would need to be signifi-
cantly larger, and it may not even be possible to design a structure to achieve the same20

reliability as expected under stationary conditions.
A unique tool offered by HFA that can provide advancements in planning for non-

stationary natural hazards is the cumulative hazard function H(τ) which represents the
total hazard over a given amount of time (Wienke, 2010). For example if po = 0.002,
as expected under stationary conditions H(τ) = 1 for τ = 500, or we will experience, on25

average, one exceedance event every 500 years. However, if a trend with a magnifi-
cation factor M = 1.1 (∆τ = 10) is introduced in the same system, the time it takes for
H(τ) = 1 is about 36 time periods, or another view, H(τ) = 333 events for τ = 500. Fig-
ure 3 illustrates these interpretations for two exceedance event sizes, fixed Cx = 0.75:

6900

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/3/6883/2015/nhessd-3-6883-2015-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/3/6883/2015/nhessd-3-6883-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
3, 6883–6915, 2015

Hazard function
theory

L. K. Read and
R. M. Vogel

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(a) po = 0.002, showing the number of time periods until H(τ) = 1; and (b) po = 0.001,
showing the total number of events over time. In Fig. 3a, we note that the stationary
M = 1 line corresponds with the H(τ) = 1 for τ = 500 as expected, and that as M in-
creases, the time until an exceedance event occurs dramatically decreases (note the
log x axis scale). Figure 3b depicts a similar story, but illustrates an alternate interpreta-5

tion: the total number of exceedance events over a time period for the rarer po = 0.001
event, where H(τ) ranges from 1 for τ = 1000 as expected under stationary conditions,
to H(τ) = 10+events in under 50 time periods with a large M.

When one wishes to communicate the risk of failure and event likelihood, the cu-
mulative hazard function is a useful metric for describing total risk (or reliability) over10

a certain planning horizon. While our analysis assumes that the trend would increase
over the entire time period, perhaps a “worst case” scenario, our results show that in the
presence of an increasing trend in the POT of a natural hazard series, we may experi-
ence far more exceedance events than expected under stationary conditions. Ignoring
such trends may result in significant increased damages and losses from under-design15

of infrastructure or insufficient planning in populated areas.
After computing ST (t) and h(t) we can easily use Eq. (1) to determine the pdf of the

time to failure distribution for the nonstationary GP2 model by Eq. (15). Since we are
interested in the behavior of fT (t) due to trends on a range of physical systems and
for extreme events, we plot fT (t) for a fixed Cx = 0.75 in Fig. 4, for a range of increas-20

ing trends (M = 1, 1.02, 1.1, 1.25) and three event sizes (po = (a) 0.01, (b) 0.002, (c)
0.001). We note that the shape of fT (t) evolves from the expected exponential curve
under stationary conditions, to a more symmetric or normally distributed shape as M
increases. These results complement those by Read and Vogel, (2015a, b) who show
similar behavior for a nonstationary 2-parameter lognormal model of an AMS series25

of floods. Interestingly, Fig. 4b and c shows little difference in timing of the peak, es-
pecially for larger M values (M > 1.1), suggesting that for systems experiencing large
increasing trends, rare events (po = 0.002) and extremely rare events (po = 0.001) may
exhibit similar probabilistic behavior.
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Similarly, in Fig. 5 we fix the trend at M = 1.05 and explore the behavior of fT (t) over
a realistic range of Cx values (0.5, 0.75, 1.5), for the same three event sizes (po = (a)
0.01, (b) 0.002, (c) 0.001). As consistent with Fig. 1 showing h(t) for various Cx values,
the shape of fT (t) in less variable systems (lower Cx) is more impacted by a trend than
a more variable system, as indicated by the sharp peaks and shift in timing of the peaks5

(Fig. 5a–c). We again highlight the similar shape and timing of peaks in the po = 0.002
and po = 0.001 events, an unanticipated yet consistent result with Fig. 4.

Our investigation of the behavior of fT (t) for the nonstationary GP2 model indicates
that the shape and timing of the distribution changes with both the magnitude of the
trend and variability of natural hazard. We also note that fT (t) exhibits complex pat-10

terns under nonstationary conditions, e.g. fT (t) is less impacted in shape/timing by M
for smaller events (po), and that the presence of a trend leads to a range of shapes (ap-
proaching normal for large positiveM) of the time to failure distribution. This more com-
plicated behavior implies that under the premise of nonstationarity, we can no longer
assume the failure time distribution is exponential in shape and that the MTTF is equal15

to 1/p. In fact, the mean of the distribution of T is no longer a sufficient statistic as is
the case under stationary conditions. We are the first to document such changes in
the context of natural hazards for the GP2 distribution and anticipate that others will
continue to do so for specific events that exhibit nonstationarity. Using the derivations
of h(t), ST (t), H(τ), and fT (t) that we have provided here, one can use knowledge of20

the system (M, Cx) and existing design metrics (po and reliability standards) in combi-
nation with HFA to better understand and characterize natural hazards as they change
through time.

4 Summary and conclusions

We have presented a general introduction to the probabilistic analysis of nonstationary25

natural hazards using the well-developed field of hazard function analysis (HFA). We
cited numerous sources of evidence which suggests that the magnitudes of a variety
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of natural hazards are increasing, thus our study should be of considerable interest in
the coming years. To the authors’ knowledge, the analysis and discussion presented
here provides the first formal probabilistic analysis of the link between a natural hazard
with design event X , and the corresponding properties of the probability distribution of
the time to failure T associated with a structure designed to protect against that design5

event. Through the lens of HFA, we have investigated the impacts of a positive trend in
natural hazard event magnitudes for a random variable X that follows a GP2 distribu-
tion on the likelihood of future hazards under nonstationary conditions. We introduce
a complete probabilistic analysis useful for re-evaluating event likelihood, reliability (sur-
vival) and cumulative hazard under nonstationary conditions which should prove useful10

for a wide range of natural hazards. Our results are applicable for understanding the
probabilistic behavior of the time to occurrence of natural hazards subject to increasing
trends.

By explicitly linking properties of the time to failure T with the exceedance probabil-
ity p of a natural hazard (X ), we have derived the primary hazard analysis equations:15

the hazard function h(t), the survival (reliability) function ST (t), the cumulative haz-
ard function H(τ), and the pdf of the time to failure distribution fT (t) corresponding to
a POT series of natural hazards which follows the GP2 distribution. We parameterize
this GP2 model such that it only depends on the design exceedance probability at time
τ = 0, po, the known system variability Cx, and the magnification factor M, and use20

this to explore the impact of positive trends on the reliability, or survival ST (t) until an
exceedance event. Findings of this investigation suggest that under nonstationary con-
ditions, medium and large events could occur with much greater frequency than under
stationary conditions (no trend). We find that the total number of hazards as character-
ized by H(τ) within a given planning period may substantially increase in the presence25

of a positive trend in the POT magnitudes of a natural hazard. Perhaps most impor-
tantly, under nonstationary conditions, the distribution of the time to the natural hazard
is no longer exponentially distributed, and instead takes on a distribution with extremely
complex shapes, depending on the variability of the hazard and the magnitude of the
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trend. As trend magnitudes increase for a range of event sizes (po), the shape of the
distribution of the survival time approaches normality in shape and exhibits a sharp
peak with a heavy upper-tail. We also find that variability impacts the shape and timing
of this peak in fT (t), such that less variable systems (lower Cx) are more affected by
larger M values, i.e. produce a more pronounced peak and a greater shift in timing.5

The implications of these findings for planning and design for nonstationary natural
hazards are significant. Given a historic (or future) increasing trend in the magnitudes
of some hazard, we should prepare to experience exceedance events much more fre-
quently. For fields that use reliability as a primary design standard, our analysis sug-
gests that the presence of a positive trend corresponds to a lower system reliability10

for a given design event (xo) than under stationary conditions. Through exploration of
ST (t) for various trend factors, we also note that determining the reliability of a sys-
tem over time is more complicated given uncertainty in the magnitude of the trend and
how it will manifest through time. In either case, continuing to assume stationary con-
ditions when computing system reliability for design purposes, when a positive trend15

in the POT magnitudes has been observed historically, may pose a significant risk
to the populations and infrastructure in that region. Thus we recommend that design
practices should be reviewed and adapted for cases where nonstationary behavior of
natural hazards is evident in order to avoid under-design (also see Vogel et al., 2013).

Overall, we have shown that HFA provides a set of tools for understanding the prob-20

abilistic behavior of nonstationary natural hazards for application to a wide range of
natural phenomena. Using the well-studied theory of HFA, engineers and planners can
use language from HFA – hazard rate, survival, cumulative hazard – to relate to risk
and reliability under nonstationarity for natural hazards, advancing risk communication
in this field. We intend for this analysis to inform future work on modeling nonsta-25

tionary natural hazards with HFA, for example by developing other models that may
include co-variates, extensions to AMS series, and also exploring the impact of de-
creasing trends. We expect that additional research on this topic will contribute to the
emerging conversation on planning for nonstationary natural hazards and shed light
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on innovative methods to determine best practices for infrastructure design. Results
of this work further support the need for a risk-based decision analysis framework for
selecting a design event under nonstationarity (Rosner et al., 2014). Such a framework
can provide guidance in choosing infrastructure that minimizes the risk of under-design
(protection) and over-design (excess spending) through probabilistic decision trees.5
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Table 1. Summary of natural hazards employing Poisson-GP model.

Natural Hazard References Evidence of nonsta-
tionarity
in process

Nonstationary
POT model
formulated?

Floods Todorovic (1978);
Madsen et al. (1997)

Bayazit (2015) for
a review

Yes –
Strupczewski
et al. (2001); Vil-
larini et al. (2012)

Earthquakes Gutenberg and
Richter (1954);
Utsu (1999)

Ellsworth (2013) for
a review

No

Extreme rainfall Sugahara
et al. (2009); Bonnin
et al. (2011)

Begueria
et al. (2011); Tram-
blay et al. (2013);
Roth et al. (2014);
Sugahara
et al. (2009)

Yes, in all refer-
ences

Wildfires Holmes et al. (2008) Liu et al. (2010) No
Extreme wind speeds Palutikof

et al. (1999) for
review; Jagger and
Elsner (2006)

Young et al. (2011);
Pryor and
Barthelmie (2010)
for review

Young
et al. (2011)

Wave height (proxy for storm surge) Davison and
Smith (1990)

Mendez et al.
(2006); Young
et al. (2011); Rug-
gerio et al. (2010)

Yes –
in Mendez et al.
(2006); and Rug-
gerio et al. (2010)

Daily max and min temperatures Waylen (1988) Keellings and
Waylen (2014)

Yes, but not de-
rived in text

Ecological extremes Katz et al. (2005) Katz et al. (2005)
(sediment yield)

Yes
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Figure 1. Hazard function h(t) for the nonstationary GP2 model, po = 0.002 for (a) a range of
variability (Cx = 0.75, 1.25, 1.5), givenM = 1.1; (b) a range of trend values (M = 1.1, 1.25, 1.5),
given Cx = 0.75.
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Figure 2. Reliability or Survival function ST (t) for the nonstationary GP2 model, po = 0.002 and
Cx = 0.75, for a range of trend values (M = 1, 1.02, 1.1, 1.25).
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Figure 3. Cumulative hazard function HT (t) for the nonstationary GP2 model, with a fixed
Cx = 0.75 for a range of trend values (M = 1, 1.02, 1.1, 1.25); panels show two different size
exceedance events (a) po = 0.002 and (b) po = 0.001.
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Figure 4. Probability density function (pdf) of the time to failure distribution for the nonstationary
GP2 model, with a fixed Cx = 0.75 for a range of trend values (M = 1, 1.02, 1.1, 1.25); panels
show three exceedance event sizes increasing in extremity (a) po = 0.01, (b) po = 0.002 and
(c) po = 0.001 .
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Figure 5. Probability density function (pdf) of the time to failure distribution for the nonstationary
GP2 model, with a fixed M = 1.05 for a range of trend values (Cx = 0.5, 0.75, 1.50); panels
show three exceedance event sizes increasing in extremity (a) po = 0.01, (b) po = 0.002 and
(c) po = 0.001.
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